首页> 外文OA文献 >Context Aware Query Image Representation for Particular Object Retrieval
【2h】

Context Aware Query Image Representation for Particular Object Retrieval

机译:特定对象检索的上下文感知查询图像表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current models of image representation based on Convolutional NeuralNetworks (CNN) have shown tremendous performance in image retrieval. Suchmodels are inspired by the information flow along the visual pathway in thehuman visual cortex. We propose that in the field of particular objectretrieval, the process of extracting CNN representations from query images witha given region of interest (ROI) can also be modelled by taking inspirationfrom human vision. Particularly, we show that by making the CNN pay attentionon the ROI while extracting query image representation leads to significantimprovement over the baseline methods on challenging Oxford5k and Paris6kdatasets. Furthermore, we propose an extension to a recently introducedencoding method for CNN representations, regional maximum activations ofconvolutions (R-MAC). The proposed extension weights the regionalrepresentations using a novel saliency measure prior to aggregation. This leadsto further improvement in retrieval accuracy.
机译:基于卷积神经网络(CNN)的当前图像表示模型在图像检索中显示了巨大的性能。此类模型的灵感来自人类视觉皮层中沿视觉路径的信息流。我们建议,在特定的对象检索领域,也可以通过从人类视觉中汲取灵感来对从具有给定关注区域(ROI)的查询图像中提取CNN表示的过程进行建模。特别是,我们表明,通过使CNN在提取查询图像表示时关注ROI的情况下,对挑战性Oxford5k和Paris6k数据集的基线方法进行了显着改进。此外,我们提出了对CNN表示,卷积的区域最大激活(R-MAC)的最新引入的编码方法的扩展。拟议的扩展在聚合之前使用新颖的显着性度量对区域表示加权。这导致检索精度的进一步提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号